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The stability is considered of the flow with velocity components 

(0, QrP+ O(e2)1, 2.Qr,f(r/.o)) 

(where f(x) is a function of order one) in cylindrical polar co-ordinates ( r ,  $, z ) ,  
bounded by the rigid cylinders r/ro = x1 and r/ro = 1 (0 < x1 < 1) .  When e < 1, 
the flow is shown to be unstable to non-axisymmetric inviscid disturbances of 
sufficiently large axial wavelength. The case of Poiseuille flow in a rotating pipe 
is considered in more detail, and the growth rate of the most rapidly growing 
disturbance is found to be 3eQ. 

1. Description of problem 
It is well known that pure solid body rotation in an incompressible fluid is 

stable to all infinitesimal disturbances. It is sometimes inferred from this that 
flows which deviate only slightIy from solid body rotation, such as a slow axial 
flow in a rapidly rotating pipe, must be equally stable. However, Ludwieg 
(1961) showed that the flow given in cylindrical polar co-ordinates ( r ,  $, z )  by the 
velocity components (0, V,[l + C+ (x - l)], W, [1+ C, (x - l)]), where x = r/ro, where 
r,, V,, W,, C+, C, are constants, and where the boundaries of the flow are the rigid 
walls of the narrow cylindrical annulus 1 - 6 < x < 1 + 6 (6 < l),  is unstable to 
infinitesimal inviscid disturbances if 

(1 - C$) (1  - c;) - (3 - C4) Cl,z < 0. (1) 

In  particular, if C+ = 1 (solid body rotation), the flow is unstable for all non-zero 
C,, however small. Thus, subject to the narrow-gap approximation, an arbitrarily 
small axial shear is sufficient to destabilize solid body rotation. In  this note we 
show that the same conclusion may be reached without the narrow gap ap- 
proximation. 

Consider the basic flow [ O ,  V ( r ) ,  W(r)] bounded by the rigid cylindrical annulus 
rl < r < r,, where ro > rl 2 0. Assuming infinitesimal perturbations to this 
basic flow, we can linearize the equations of motion, and eliminate all perturba- 
tion quantities except the radial velocity component, which we suppose to be 
written 

u(r) exp {i(ut + w$ + kz)} ,  
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where k is positive and n is an integer. In  an inviscid fluid, the resulting single 
equation for u(r )  is (Howard & Gupta 1962, equation (18)): 

The boundary conditions are 
u(rl) = u(ro) = 0. (4) 

The problem is thus seen as a search for eigenvalues of the quantity a; instability 
will result if the imaginary part of CT (and hence y )  is negative for any pair of 
wave-numbers (n, k). Prom equations (2)-(4), Howard & Gupta (1962) showed 
that a necessary condition for instability is 

for some r in the range (r l ,ro) .  Hence when V = Qr (solid body rotation), the 
flow is stable to axisynimetric disturbances (n = 0) if IdW/drl < 4Q everywhere. 

2. Proof of instability 
Let us now non-dimensionalize the problem by the following transformations: 

where the functionsf(x) and g(x) are of order one, and without loss of generality 
we take g ( l )  = 1, f(1) = 0. For solid body rotation g(x)  z 1. Equation (2) now 
becomes 

where a prime denotes differentiation with respect to x. The boundary conditions 
are y (x l )  = y( 1) = 0 ,  where x1 = rl/ro (if xl = 0 ,  the left-hand condition is y(x) = 

o(x) as x- to) .  Howard & Gupta’s condition ( 5 )  is, in non-dimensional terms, 

Since n may be chosen to take either sign, the quantity nf’ may always be made 
positive at  any x where f ’ ( x )  + 0. Thus condition (8) can be satisfied at any such 



Instability of rapidly rotating shear $ows 605 

x and for arbitrarily small values of e, as long as la/nl is sufficiently small. We 
are primarily interested in the destabilising influence of a small axial shear 
superimposed on the rotation, so we shall indeed consider only small values of 8,  

and may therefore restrict our attention to small values of (a/nl, setting a = Pen, 
where /3 = O(l ) ,  and /3n > 0 (since a > 0). 

It is possible to make equation (6) entirely tracbable if we impose one further 
restriction, this time on the basic swirl: assume that g(x) is given by 

g(x) = 1 +e2h(x), (9) 

where h is of order one, and h(1) = 0. The basic flow defined by (6) and (9) is 
thus solid body rotation, perturbed by an axial shear flow of order e ( < 1) and an 
azimuthal correction of order c2, and is evidently stable to  axisymmetric dis- 
turbances since 

IdW/drl = 2 4  f ’ l  -g 4Q. 

The quantity w is now a constant to within order s2 

say, so that, if Ole2) is neglected with respect to unity, equation (7)  reduces to 

- I d  - (xy’) + y - - - - (@’ + Qxh” + Pf’ + Pxf ” - 2pX) + 2 c“(/3-3] = 0 (11) 
n2 dx 1 t nZo WO 

subject to the boundary conditions y(xJ = y(1) = 0. If we are permitted to 
neglect the second term in the curly bracket, we are left with a Sturm-Liouville 
problem. In these circumstances the characteristic values for W: are all real, and 
some of them are negative (implying instability) if 

P(P-f’/x) < 0 (12) 

for some x in (q, 1). When (12) is satisfied, the negative eigenvalues of o$, in 
general have order e2, although the largest of them (corresponding to the most 
rapidly growing disturbance) may have a higher order. In general, therefore, there 
exist unstable modes for which [wi l  = O(e2) and in that case the second term in 
the curly bracket of (11) is of order e, and its neglect is justified. Thus a necessary 
and sufficient condition for the flow to be unstable to a disturbance characterized 
by the non-dimensional wave-numbers ( a , n ) ,  where a = Pen, is given by (12), 
and we can see that a /3 can be chosen t o  satisfy (12) at all x where f’(x) $: 0. 
The flow is therefore unstable. 

If the radial scale of variations in the basic axial velocity is much smaller 
than the dimensions of the container, we should use that scale for ro in (6)) and 
let the outer boundary be r/ro = x2 1. The theory still goes through as long as 
ax2 = Penx2 < 1. 

Finally we notice that there is one flow for which the problem reduces to 
Sturm-Liouville form without the assumption of small e. This is the flow for 
which 

2ea 
f(x) = n [1 --g(x)l 
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to make w constant, and 

to make the l/o term in (7) disappear. In  this case, however, the coefficient of 
y/w2 is positive, and the flow is stable. 

3. Example : Poiseuille flow in a rotating pipe 

rotating pipe, which is relatively simple to produce experimentally. Here 
A particular example of the flows discussed above is Poiseuille flow in a 

f(x) = 1 -x2, g(x) = 1) x1 = 0. 

The condition (12) demonstrates that the flow is unstable to all disturbances for 
which - 3 < p < 0, i.e. for which n < - 1 (n = - 1 is prohibited by the boundary 
condition y(x) = o(x) as x -+ 0) and 0 < a! < - 3en. We may calculate the growth 
rate of unstable disturbances by actually solving equation (11)) which here 
reduces to 

The solution of (13) satisfying the condition y(x) = o(x) as x+ 0 is 

Y = Jm(W> 
where m = --n > 1, h2 = e z m 2 ~ ( P +  2)/wE and J, is the Bessel function of the 
first kind with order m. The boundary condition y( 1)  = 0 shows that the eigen- 
values for h (and hence wo) are given by the equation 

Jm(h) = 0. (14) 

For given values of m and /3 in the unstable range, the largest value of ( - W E )  
(i.e. the highest growth rate) is given by the smallest value of h satisfying (14)) 
that is, by the first zero jm, of the Bessel function. Por all values of m this first 
zero is greater than m, and for large values of m it is given asymptotically by 

3 m , l  ' N mf 1 * 8 6 ~ d +  O ( i ? d )  (15) 

(Watson 1944, pp. 516 et seq.). Thus the corresponding value of w$ is given by 

Since the second term in (15) is positive, that in (16) is negative, and greater 
values of ( -  ui), for given /3, occur for larger m.. Also the maximum value of 
- P(p + 2 )  occurs for /3 = - 1, so the most rapidly growing disturbance is given 
by /3 = - 1 and m+ co, and then u; = - em". I n  dimensional terms this means 

(17) 
that 

from (10)) and the growth rate of the most rapidly growing disturbance is 2eQ. 
A non-zero but small viscosity v will undoubtedly have a considerable effect 

on the above theory. However, if the Reynolds number Woro/v is sufficiently 

(T = - nQ * i2eQ + O(e2) 
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large, it is unlikely to alter the prediction of instability, by the above mechanism, 
for some non-zero values of n. Its particular effecb will be to stabilize those 
disturbanceswith a highwave-number (In1 9 l), so that the most rapidly growing 
disturbance will occur at a finite value of In], with a growth rate less than that 
predicted in (17). 

This work was supported in part by contract no. Nonr 4010(02) from the U.S. 
Office of Naval Research. 
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